Primitive Leavitt path algebras, and a general solution to a question of Kaplansky

Gene Abrams

Noncommutative rings and their Applications, III Université d'Artois, Lens, 1 July 2013

(joint work with Jason Bell and K.M. Rangaswamy)

Gene Abrams

University of Colorado @ Colorado Springs

Throughout R is associative, but not necessarily with identity.

Gene Abrams

・ロン ・回 と ・ヨン ・ヨン University of Colorado @ Colorado Springs

3

Throughout R is associative, but not necessarily with identity. Assume R at least has "local units":

Gene Abrams

・ロン ・回と ・ヨン ・ ヨン University of Colorado @ Colorado Springs

3

Prime rings

Definition: I, J two-sided ideals of R. The product IJ is the two-sided ideal

$$IJ = \{\sum_{\ell=1}^{n} i_{\ell} j_{\ell} \mid i_{\ell} \in I, j_{\ell} \in J, n \in \mathbb{N}\}.$$

R is *prime* if the product of any two nonzero two-sided ideals of R is nonzero.

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

Prime rings

Definition: I, J two-sided ideals of R. The product IJ is the two-sided ideal

$$IJ = \{\sum_{\ell=1}^{n} i_{\ell} j_{\ell} \mid i_{\ell} \in I, j_{\ell} \in J, n \in \mathbb{N}\}.$$

R is *prime* if the product of any two nonzero two-sided ideals of *R* is nonzero.

Examples:

- **1** Commutative domains, e.g. fields, \mathbb{Z} , K[x], $K[x, x^{-1}]$, ...
- 2 Simple rings
- 3 End_K(V) where dim_K(V) is infinite. ($\cong \operatorname{RFM}(K)$)

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

-

Note: Definition makes sense for nonunital rings.

Gene Abrams

University of Colorado @ Colorado Springs

3

イロン イロン イヨン イヨン

Note: Definition makes sense for nonunital rings.

Lemma: R prime. Then R embeds as an ideal in a unital prime ring R_1 . (Dorroh extension of R.)

If R is a K-algebra then we can construct R_1 a K-algebra for which $\dim_{\mathcal{K}}(R_1/R) = 1$.

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

-

Definition: R is *left primitive* if R admits a faithful simple (= "irreducible") left *R*-module.

Rephrased: if there exists $_RM$ simple for which $Ann_R(M) = \{0\}$.

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Definition: R is *left primitive* if R admits a faithful simple (= "irreducible") left *R*-module. Rephrased: if there exists $_RM$ simple for which $Ann_R(M) = \{0\}$.

Examples:

Simple rings (note: need local units to build irreducibles) _

NON-Examples:

- $\mathbb{Z}, K[x], K[x, x^{-1}]$

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Primitive rings are "natural" generalizations of matrix rings.

Jacobson's Density Theorem: *R* is primitive if and only if *R* is isomorphic to a dense subring of $\operatorname{End}_D(V)$, for some division ring *D*, and some *D*-vector space *V*.

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

Primitive rings are "natural" generalizations of matrix rings.

Jacobson's Density Theorem: *R* is primitive if and only if *R* is isomorphic to a dense subring of $\operatorname{End}_D(V)$, for some division ring *D*, and some *D*-vector space *V*.

Here $D = \text{End}_R(M)$ where M is the supposed simple faithful R-module.

イロト イポト イヨト イヨト

Primitive rings are "natural" generalizations of matrix rings.

Jacobson's Density Theorem: *R* is primitive if and only if *R* is isomorphic to a dense subring of $\operatorname{End}_D(V)$, for some division ring *D*, and some *D*-vector space *V*.

Here $D = \operatorname{End}_R(M)$ where M is the supposed simple faithful R-module.

So this gives many more examples of primitive rings, e.g. FM(K), RCFM(K), etc ...

Gene Abrams

イロト イポト イヨト イヨト

Primitive rings are "natural" generalizations of matrix rings.

Jacobson's Density Theorem: *R* is primitive if and only if *R* is isomorphic to a dense subring of $\operatorname{End}_D(V)$, for some division ring *D*, and some *D*-vector space *V*.

Here $D = \operatorname{End}_R(M)$ where M is the supposed simple faithful R-module.

So this gives many more examples of primitive rings, e.g. FM(K), RCFM(K), etc ...

Definition of "primitive" makes sense for non-unital rings.

イロト イポト イヨト イヨト

Prime and primitive rings

Well-known (and easy) Proposition: Every primitive ring is prime.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Prime and primitive rings

Well-known (and easy) Proposition: Every primitive ring is prime.

If R is prime, then in previous embedding,

R is primitive \Leftrightarrow *R*₁ is primitive.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Prime and primitive rings

Converse of Lemma is not true (e.g. \mathbb{Z} , K[x], $K[x, x^{-1}]$).

In fact, the only commutative primitive unital rings are fields.

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Let $E = (E^0, E^1, r, s)$ be any directed graph, and K any field.

$$\bullet^{s(e)} \xrightarrow{e} \bullet^{r(e)}$$

Construct the "double graph" (or "extended graph") \hat{E} , and then the path algebra $K\widehat{E}$.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Let $E = (E^0, E^1, r, s)$ be any directed graph, and K any field.

 $\bullet^{s(e)} \xrightarrow{e} \bullet^{r(e)}$

Construct the "double graph" (or "extended graph") \hat{E} , and then the path algebra $K\hat{E}$. Impose these relations in $K\hat{E}$:

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Let $E = (E^0, E^1, r, s)$ be any directed graph, and K any field.

$$\bullet^{s(e)} \xrightarrow{e} \bullet^{r(e)}$$

Construct the "double graph" (or "extended graph") \widehat{E} , and then the path algebra $K\widehat{E}$. Impose these relations in $K\widehat{E}$: (CK1) $e^*e = r(e)$; $f^*e = 0$ for $f \neq e$ in E^1 ; and (CK2) $v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$ for all $v \in E^0$

(just at those vertices v which are not sinks)

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Let $E = (E^0, E^1, r, s)$ be any directed graph, and K any field.

$$\bullet^{s(e)} \xrightarrow{e} \bullet^{r(e)}$$

Construct the "double graph" (or "extended graph") \hat{E} , and then the path algebra $K\hat{E}$. Impose these relations in $K\hat{E}$:

$$(\mathsf{CK1})$$
 $e^*e = r(e);$ $f^*e = 0$ for $f \neq e$ in E^1 ; and

(CK2)
$$v = \sum_{\{e \in E^1 | s(e) = v\}} ee^*$$
 for all $v \in E^0$

(just at those vertices v which are not sinks)

Then the Leavitt path algebra of E with coefficients in K is:

$$L_{\mathcal{K}}(E) = \mathcal{K}\widehat{E} / < (\mathcal{C}\mathcal{K}1), (\mathcal{C}\mathcal{K}2) >$$

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Example 1.

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \cdots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_{\mathcal{K}}(E) \cong M_n(\mathcal{K})$.

Gene Abrams

University of Colorado @ Colorado Springs

3

<ロ> <同> <同> < 回> < 回>

Example 1.

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \cdots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_{\kappa}(E) \cong M_n(K)$.

Example 2.

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \longrightarrow \cdots$$

Then $L_{\mathcal{K}}(E) \cong \mathrm{FM}_{\mathbb{N}}(\mathcal{K})$.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Example 1.

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \cdots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_n}$$

Then $L_{\kappa}(E) \cong M_n(K)$.

Example 2.

$$E = \bullet^{v_1} \xrightarrow{e_1} \bullet^{v_2} \xrightarrow{e_2} \bullet^{v_3} \longrightarrow \cdots$$

Then $L_{\mathcal{K}}(E) \cong \mathrm{FM}_{\mathbb{N}}(\mathcal{K})$.

Example 3.

$$E = \bullet^{v_1} \xrightarrow{(\mathbb{N})} \bullet^{v_2}$$

Then $L_{\mathcal{K}}(E) \cong \mathrm{FM}_{\mathbb{N}}(\mathcal{K})_1$.

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

3

Example 4.
$$E = R_1 = \bullet^v \bigcirc \times$$
 Then $L_K(E) \cong K[x, x^{-1}].$

Example 5.

$$E = R_n = \underbrace{\begin{array}{c} y_3 \\ \bullet^{v} \\ \bullet^{v} \\ y_n \end{array}}^{y_3} y_2$$

Then $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(1, n)$, the Leavitt algebra of type (1, n).

Gene Abrams

University of Colorado @ Colorado Springs

э

<ロ> <同> <同> < 回> < 回>

1. $L_{\mathcal{K}}(E)$ is unital if and only if E^0 is finite; in this case $1_{L_{\mathcal{K}}(E)} = \sum_{v \in E^0} v$.

Gene Abrams

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

1. $L_{\kappa}(E)$ is unital if and only if E^0 is finite; in this case $1_{L_{\kappa}(E)} = \sum_{v \in F^0} v.$

2. Every element of $L_{\mathcal{K}}(E)$ can be expressed as $\sum_{i=1}^{n} k_i \alpha_i \beta_i^*$ where $k_i \in K$ and α_i, β_i are paths for which $r(\alpha_i) = r(\beta_i)$. (This is not generally a basis.)

Gene Abrams

University of Colorado @ Colorado Springs

-

1. $L_{\kappa}(E)$ is unital if and only if E^0 is finite; in this case $1_{L_{\kappa}(E)} = \sum_{v \in F^0} v.$

2. Every element of $L_{\mathcal{K}}(E)$ can be expressed as $\sum_{i=1}^{n} k_i \alpha_i \beta_i^*$ where $k_i \in K$ and α_i, β_i are paths for which $r(\alpha_i) = r(\beta_i)$. (This is not generally a basis.)

3. There is a natural \mathbb{Z} -grading on $L_{\mathcal{K}}(E)$, generated by defining

$$\deg(v) = 0, \ \deg(e) = 1, \ \deg(e^*) = -1$$

With respect to this grading, every nonzero graded ideal of $L_{\kappa}(E)$ contains a vertex of E.

Gene Abrams

University of Colorado @ Colorado Springs

-

4. An exit e for a cycle $c = e_1 e_2 \cdots e_n$ based at v is an edge for which $s(e) = s(e_i)$ for some $1 \le i \le n$, but $e \ne e_i$.

If every cycle in E has an exit ("Condition (L)"), then every nonzero ideal of $L_{\mathcal{K}}(E)$ contains a vertex, and every nonzero left ideal of $L_{\mathcal{K}}(E)$ contains a nonzero idempotent.

4. An exit e for a cycle $c = e_1 e_2 \cdots e_n$ based at v is an edge for which $s(e) = s(e_i)$ for some $1 \le i \le n$, but $e \ne e_i$.

If every cycle in E has an exit ("Condition (L)"), then every nonzero ideal of $L_{\mathcal{K}}(E)$ contains a vertex, and every nonzero left ideal of $L_{\mathcal{K}}(E)$ contains a nonzero idempotent.

5. If c is a cycle based at v for which c has no exit, then $vL_{\mathcal{K}}(E)v \cong \mathcal{K}[x, x^{-1}].$

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Prime Leavitt path algebras

Notation: $u \ge v$ means either u = v or there exists a path p for which s(p) = u, r(p) = v. u "connects to" v.

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Prime Leavitt path algebras

Notation: $u \ge v$ means either u = v or there exists a path p for which s(p) = u, r(p) = v. u "connects to" v.

Lemma. If I is a two-sided ideal of $L_{\mathcal{K}}(E)$, and $u \in E^0$ has $u \in I$, and $u \ge v$, then $v \in I$.

Easy proof: If p has s(p) = u, r(p) = w, then using (CK1) we get

$$p^*p = r(p) = w$$
; but $p^*p = p^* \cdot s(p) \cdot p = p^*up \in I$.

Gene Abrams

University of Colorado @ Colorado Springs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_K(E)$ is prime \Leftrightarrow for each pair $v, w \in E^0$ there exists $u \in E^0$ with $v \ge u$ and $w \ge u$.

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_K(E)$ is prime \Leftrightarrow for each pair $v, w \in E^0$ there exists $u \in E^0$ with $v \ge u$ and $w \ge u$. "Downward Directed" (MT3)

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Prime Leavitt path algebras

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) *E* arbitrary. Then $L_K(E)$ is prime \Leftrightarrow for each pair $v, w \in E^0$ there exists $u \in E^0$ with v > u and w > u. "Downward Directed" (MT3)

Idea of Proof. (\Rightarrow) Let *R* denote $L_{\mathcal{K}}(E)$. Let $v, w \in E^0$. But $RvR \neq \{0\}$ and $RwR \neq \{0\} \Rightarrow RvRwR \neq \{0\} \Rightarrow vRw \neq \{0\} \Rightarrow v\alpha\beta^*w \neq 0$ for some paths α, β in *E*. Then $u = r(\alpha)$ works.

イロト イポト イヨト イヨト

Prime Leavitt path algebras

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) *E* arbitrary. Then $L_{\kappa}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^0$ there exists $u \in E^0$ with $v \ge u$ and $w \ge u$. "Downward Directed" (MT3)

Idea of Proof. (\Rightarrow) Let R denote $L_{\mathcal{K}}(E)$. Let $v, w \in E^0$. But $RvR \neq \{0\}$ and $RwR \neq \{0\} \Rightarrow RvRwR \neq \{0\} \Rightarrow vRw \neq \{0\} \Rightarrow$ $v\alpha\beta^*w\neq 0$ for some paths α,β in E. Then $u=r(\alpha)$ works.

 (\Leftarrow) $L_{\kappa}(E)$ is graded by \mathbb{Z} , so need only check primeness on nonzero graded ideals I, J. But each nonzero graded ideal contains a vertex. Let $v \in I \cap E^0$ and $w \in J \cap E^0$. By downward directedness there is $u \in E^0$ with v > u and w > u. But then $u = p^* v p \in I$ and $u = q^* w q \in J$, so that $0 \neq u = u^2 \in IJ$.

Gene Abrams

University of Colorado @ Colorado Springs

3

The Countable Separation Property

Definition. Let E be any directed graph. E has the *Countable* Separation Property (CSP) if there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.

E has the "Countable Separation Property" with respect to S.

Gene Abrams

University of Colorado @ Colorado Springs

(a)

The Countable Separation Property

Observe: If E^0 is countable, then E has CSP.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <四> <四> <日> <日> <日</p>

The Countable Separation Property

Observe: If E^0 is countable, then E has CSP.

Example: X uncountable, S the set of finite subsets of X. Define the graph E_X :

- 1 vertices indexed by S, and
- 2 edges induced by proper subset relationship.
- Then E_X does not have CSP.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Can we describe the (left) primitive Leavitt path algebras?

Note: Since $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(E)^{op}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Can we describe the (left) primitive Leavitt path algebras?

Note: Since $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(E)^{op}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)

 $L_{\kappa}(E)$ is primitive \Leftrightarrow

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

-

Can we describe the (left) primitive Leavitt path algebras?

Note: Since $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(E)^{op}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)

 $L_{\kappa}(E)$ is primitive \Leftrightarrow

1 $L_{\kappa}(E)$ is prime,

Gene Abrams

University of Colorado @ Colorado Springs

3

Can we describe the (left) primitive Leavitt path algebras?

Note: Since $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(E)^{op}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)

 $L_{\kappa}(E)$ is primitive \Leftrightarrow

1 $L_{\mathcal{K}}(E)$ is prime,

2 every cycle in E has an exit (Condition (L)),

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

Can we describe the (left) primitive Leavitt path algebras?

Note: Since $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(E)^{op}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, *Trans. A.M.S.*, to appear)

 $L_{\mathcal{K}}(E)$ is primitive \Leftrightarrow

1 $L_K(E)$ is prime,

- 2 every cycle in *E* has an exit (Condition (L)), and
- 3 E has the Countable Separation Property.

Gene Abrams

Iniversity of Colorado @ Colorado Springs

$L_{\kappa}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of R, N + I = R.

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

3

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of R, N + I = R.

2. Embed a prime $L_{\mathcal{K}}(E)$ in a unital algebra $L_{\mathcal{K}}(E)_1$ in the usual way; primitivity is preserved.

Gene Abrams

University of Colorado @ Colorado Springs

3

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of R, N + I = R.

2. Embed a prime $L_{\mathcal{K}}(E)$ in a unital algebra $L_{\mathcal{K}}(E)_1$ in the usual way: primitivity is preserved.

3. Show that CSP allows us to build a left ideal in $L_{\mathcal{K}}(E)_1$ with the desired properties.

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

3

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of R, N + I = R.

2. Embed a prime $L_{\mathcal{K}}(E)$ in a unital algebra $L_{\mathcal{K}}(E)_1$ in the usual way; primitivity is preserved.

3. Show that CSP allows us to build a left ideal in $L_{\mathcal{K}}(E)_1$ with the desired properties.

4. Then show that the lack of the CSP implies that no such left ideal can exist in $L_{\mathcal{K}}(E)_1$.

University of Colorado @ Colorado Springs

3

<ロ> <同> <同> < 回> < 回>

 (\Leftarrow) . Suppose E downward directed, E has Condition (L), and E has CSP.

Suffices to establish primitivity of $L_{\mathcal{K}}(E)_1$. Let T denote a set of vertices w/resp. to which E has CSP.

T is countable: label the elements $T = \{v_1, v_2, ...\}$.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

$L_{\kappa}(E)$ primitive $\leftarrow E$ has (MT3), (L), and CSP

Inductively define a sequence $\lambda_1, \lambda_2, \dots$ of paths in E for which, for each $i \in \mathbb{N}$.

1 λ_i is an initial subpath of λ_i whenever $i \leq j$, and 2 $v_i > r(\lambda_i)$.

Define $\lambda_1 = v_1$.

Suppose $\lambda_1, ..., \lambda_n$ have the indicated properties. By downward directedness, there is u_{n+1} in E^0 for which $r(\lambda_n) \ge u_{n+1}$ and $v_{n+1} > u_{n+1}$. Let $p_{n+1} : r(\lambda_n) \rightsquigarrow u_{n+1}$. Define $\lambda_{n+1} = \lambda_n p_{n+1}$.

Gene Abrams

イロト イポト イヨト イヨト University of Colorado @ Colorado Springs

3

$L_{\kappa}(E)$ primitive $\leftarrow E$ has (MT3), (L), and CSP

Since λ_i is an initial subpath of λ_t for all $i \leq t$, we get that

 $\lambda_i \lambda_i^* \lambda_t \lambda_t^* = \lambda_t \lambda_t^*$ for each pair of positive integers $i \leq t$.

In particular $(1 - \lambda_i \lambda_i^*) \lambda_t \lambda_t^* = 0$ for $i \leq t$.

Gene Abrams

University of Colorado @ Colorado Springs

Since λ_i is an initial subpath of λ_t for all $i \leq t$, we get that

 $\lambda_i \lambda_i^* \lambda_t \lambda_t^* = \lambda_t \lambda_t^*$ for each pair of positive integers $i \leq t$.

In particular $(1 - \lambda_i \lambda_i^*) \lambda_t \lambda_t^* = 0$ for $i \leq t$.

Define
$$N = \sum_{i=1}^{\infty} L_{\mathcal{K}}(E)_1(1 - \lambda_i \lambda_i^*)$$
.
 $N \neq L_{\mathcal{K}}(E)_1$: otherwise, $1 = \sum_{i=1}^{t} r_i(1 - \lambda_i \lambda_i^*)$ for some $r_i \in L_{\mathcal{K}}(E)_1$, but then

$$0 \neq 1 \cdot \lambda_t \lambda_t^* = \left(\sum_{i=1}^t r_i (1 - \lambda_i \lambda_i^*)\right) \cdot \lambda_t \lambda_t^* = 0.$$

Gene Abrams

University of Colorado @ Colorado Springs

Claim: Every nonzero two-sided ideal I of $L_{K}(E)_{1}$ contains some $\lambda_{n}\lambda_{n}^{*}$.

Gene Abrams

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

$L_{\kappa}(E)$ primitive $\leftarrow E$ has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of $L_K(E)_1$ contains some $\lambda_n \lambda_n^*$.

Idea: E is downward directed, so $L_{K}(E)$, and therefore $L_{K}(E)_{1}$, is prime. Since $L_{\mathcal{K}}(E)$ embeds in $L_{\mathcal{K}}(E)_1$ as a two-sided ideal, we get $I \cap L_{\mathcal{K}}(E)$ is a nonzero two-sided ideal of $L_{\mathcal{K}}(E)$. So Condition (L) gives that I contains some vertex w.

Gene Abrams

University of Colorado @ Colorado Springs

3

Claim: Every nonzero two-sided ideal I of $L_{\mathcal{K}}(E)_1$ contains some $\lambda_n \lambda_n^*$.

Idea: *E* is downward directed, so $L_{\mathcal{K}}(E)$, and therefore $L_{\mathcal{K}}(E)_1$, is prime. Since $L_{\mathcal{K}}(E)$ embeds in $L_{\mathcal{K}}(E)_1$ as a two-sided ideal, we get $I \cap L_{\mathcal{K}}(E)$ is a nonzero two-sided ideal of $L_{\mathcal{K}}(E)$. So Condition (L) gives that *I* contains some vertex *w*.

Then $w \ge v_n$ for some *n* by CSP. But $v_n \ge r(\lambda_n)$ by construction, so $w \ge r(\lambda_n)$. So $w \in I$ gives $r(\lambda_n) \in I$, so $\lambda_n \lambda_n^* \in I$.

Now we're done. Show $N + I = L_{\mathcal{K}}(E)_1$ for every nonzero two-sided ideal I of $L_{\mathcal{K}}(E)_1$. But $1 - \lambda_n \lambda_n^* \in N$ (all $n \in \mathbb{N}$) and $\lambda_n \lambda_n^* \in I$ (some $n \in \mathbb{N}$) gives $1 \in N + I$.

Gene Abrams

For the converse:

Gene Abrams

University of Colorado @ Colorado Springs

For the converse:

1) If E is not downward directed then $L_{\mathcal{K}}(E)$ not prime, so that $L_{\mathcal{K}}(E)$ not primitive.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

For the converse:

1) If E is not downward directed then $L_{\mathcal{K}}(E)$ not prime, so that $L_{\kappa}(E)$ not primitive.

2) General ring theory result: If R is primitive and $f = f^2$ is nonzero then *fRf* is primitive.

So if E contains a cycle c (based at v) without exit then $vL_{\mathcal{K}}(E)v \cong \mathcal{K}[x, x^{-1}]$, which is not primitive, and thus $L_{\mathcal{K}}(E)$ is not primitive.

Gene Abrams

イロン 不同 とくほう イロン University of Colorado @ Colorado Springs

-

3) (The hard part.) Show if E does not have CSP then $L_{K}(E)$ is not primitive.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

3

3) (The hard part.) Show if *E* does not have CSP then $L_{\mathcal{K}}(E)$ is not primitive.

Lemma. Let N be a left ideal of a unital ring A. If there exist $x, y \in A$ such that $1 + x \in N$, $1 + y \in N$, and xy = 0, then N = A.

Proof: Since $1 + y \in N$ then $x(1 + y) = x + xy = x \in N$, so that

$$1=(1+x)-x\in N.$$

Gene Abrams

University of Colorado @ Colorado Springs

-

イロト イポト イヨト イヨト

We show that if *E* does not have CSP, then there does NOT exist a left ideal $N \neq L_{\mathcal{K}}(E)_1$ for which $N + I = L_{\mathcal{K}}(E)_1$ for all two-sided ideals *I* of $L_{\mathcal{K}}(E)_1$.

To do this: assume N is such an ideal, show $N = L_K(E)_1$.

Gene Abrams

University of Colorado @ Colorado Springs

3

<ロ> <同> <同> < 回> < 回>

We show that if *E* does not have CSP, then there does NOT exist a left ideal $N \neq L_{\mathcal{K}}(E)_1$ for which $N + I = L_{\mathcal{K}}(E)_1$ for all two-sided ideals *I* of $L_{\mathcal{K}}(E)_1$.

To do this: assume N is such an ideal, show $N = L_K(E)_1$.

Strategy: If *N* has this property, then for each $v \in E^0$ we have $N + \langle v \rangle = L_K(E)_1$. So for each $v \in E^0$ there exists $y_v \in \langle v \rangle$, $n_v \in N$ for which $n_v + y_v = 1$. Let $x_v = -y_v$. This gives a set $\{x_v \mid v \in E^0\} \subseteq L_K(E)_1$ for which $1 + x_v \in N$ for all $v \in E^0$.

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

Now show that the lack of CSP in E^0 forces the existence of a pair of vertices v, w for which $x_v \cdot x_w = 0$. (This is the technical part.)

Then use the Lemma.

Gene Abrams

University of Colorado @ Colorado Springs

3

Key pieces of the technical part:

1 Every element ℓ of $L_{\mathcal{K}}(E)$ can be written as $\sum_{i=1}^{n} k_i \alpha_i \beta_i^*$ for some $n = n(\ell)$, and paths α_i, β_i . In particular, we can "cover" all elements of $L_{\mathcal{K}}(E)$ by specifying *n* and lengths of paths. This is a countable covering of $L_{\mathcal{K}}(E)$. (Not a partition.)

University of Colorado @ Colorado Springs

-

Key pieces of the technical part:

- **1** Every element ℓ of $L_{\mathcal{K}}(E)$ can be written as $\sum_{i=1}^{n} k_i \alpha_i \beta_i^*$ for some $n = n(\ell)$, and paths α_i, β_i . In particular, we can "cover" all elements of $L_{\mathcal{K}}(E)$ by specifying n and lengths of paths. This is a countable covering of $L_{\mathcal{K}}(E)$. (Not a partition.)
- **2** Collect up the x_{ν} according to this covering. Since E does not have CSP, then some specific subset in the cover does not have CSP.

-

Key pieces of the technical part:

- **1** Every element ℓ of $L_{\kappa}(E)$ can be written as $\sum_{i=1}^{n} k_i \alpha_i \beta_i^*$ for some $n = n(\ell)$, and paths α_i, β_i . In particular, we can "cover" all elements of $L_{\kappa}(E)$ by specifying n and lengths of paths. This is a countable covering of $L_{\kappa}(E)$. (Not a partition.)
- 2 Collect up the x_v according to this covering. Since *E* does not have CSP, then some specific subset in the cover does not have CSP.
- 3 Show that, in this specific subset Z, there exists v ∈ Z for which the set

$$\{w \in Z \mid x_v x_w = 0\}$$

does not have CSP. In particular, this set is nonempty. Pick such v and w. Then we are done by the Lemma.

Gene Abrams

University of Colorado @ Colorado Springs

von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

 $\forall a \in R \exists x \in R \text{ with } a = axa.$

(R is not required to be unital.)

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

$$\forall a \in R \exists x \in R \text{ with } a = axa.$$

(*R* is not required to be unital.)

Examples:

- Division rings
- 2 Direct sums of matrix rings over division rings
- 3 Direct limits of von Neumann regular rings

R is regular \Leftrightarrow *R*₁ is regular.

Gene Abrams

University of Colorado @ Colorado Springs

(日) (同) (日) (日)

"Kaplansky's Question":

I. KAPLANSKY, Algebraic and analytic aspects of operator algebras, AMS, 1970.

Is every regular prime algebra primitive?

Gene Abrams

- 4 同 6 4 日 6 4 日 6 University of Colorado @ Colorado Springs

-

"Kaplansky's Question":

I. KAPLANSKY, Algebraic and analytic aspects of operator algebras, AMS, 1970.

Is every regular prime algebra primitive?

Answered in the negative (Domanov, 1977), a group-algebra example. (Clever, but very ad hoc.)

Gene Abrams

Theorem. (A-, K.M. Rangaswamy 2010)

 $L_{\mathcal{K}}(E)$ is von Neumann regular $\Leftrightarrow E$ is acyclic.

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 University of Colorado @ Colorado Springs

Theorem. (A-, K.M. Rangaswamy 2010)

 $L_{\kappa}(E)$ is von Neumann regular $\Leftrightarrow E$ is acyclic.

Idea of Proof: (\Leftarrow) If E contains a cycle c based at v, can show that a = v + c has no "regular inverse".

 (\Rightarrow) Show that if E is acyclic then every element of $L_{\mathcal{K}}(E)$ can be trapped in a subring of $L_{\mathcal{K}}(E)$ which is isomorphic to a finite direct sum of finite matrix rings.

-

Application to Kaplansky's question

It's not hard to find acyclic graphs E for which $L_K(E)$ is prime but for which C.S.P. fails.

Example (mentioned previously): X uncountable, S the set of finite subsets of X. Define the graph E_X :

- vertices indexed by S, and
- edges induced by proper subset relationship.

Then for the graph E_X ,

- 1 $L_{\kappa}(E_{\chi})$ is regular (E is acyclic)
- 2 $L_K(E_X)$ is prime (E is downward directed)
- 3 $L_K(E_X)$ is not primitive (E does not have CSP).

Gene Abrams

・ロン ・回と ・ヨン ・ ヨン University of Colorado @ Colorado Springs

-

By using uncountable sets of different cardinalities, we get:

Theorem: For any field K, there exists an infinite class (up to isomorphism) of K-algebras (of the form $L_K(E_X)$) which are von Neumann regular and prime, but not primitive.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

By using uncountable sets of different cardinalities, we get:

Theorem: For any field K, there exists an infinite class (up to isomorphism) of K-algebras (of the form $L_K(E_X)$) which are von Neumann regular and prime, but not primitive.

Remark: These examples are also "Cohn path algebras".

Gene Abrams

University of Colorado @ Colorado Springs

イロト イポト イヨト イヨト

For these graphs E, embedding $L_{\mathcal{K}}(E)$ in $L_{\mathcal{K}}(E)_1$ in the usual way gives unital, regular, prime, not primitive algebras. So we get

Theorem: For any field K, there exists an infinite class (up to isomorphism) of unital K-algebras (of the form $L_K(E_X)_1$) which are von Neumann regular and prime, but not primitive.

Gene Abrams

University of Colorado @ Colorado Springs

<ロ> <同> <同> < 回> < 回>

For these graphs E, embedding $L_{\mathcal{K}}(E)$ in $L_{\mathcal{K}}(E)_1$ in the usual way gives unital, regular, prime, not primitive algebras. So we get

Theorem: For any field K, there exists an infinite class (up to isomorphism) of unital K-algebras (of the form $L_K(E_X)_1$) which are von Neumann regular and prime, but not primitive.

Remark: The algebras $L_{\mathcal{K}}(E_X)_1$ are never Leavitt path algebras.

Gene Abrams

< □ > < □ > < ≡ > < ≡ > < ≡ > ≡
 University of Colorado @ Colorado Springs

A different construction of germane graphs:

Let $\kappa > 0$ be any ordinal. Define E_{κ} as follows:

$${\it E}^{0}_{\kappa} \ = \{ \alpha \ | \ \alpha < \kappa \}, \quad {\it E}^{1}_{\kappa} = \{ {\it e}_{\alpha,\beta} \ | \ \alpha,\beta < \kappa, \ \text{and} \ \alpha < \beta \},$$

$$s(e_{lpha,eta})=lpha$$
, and $r(e_{lpha,eta})=eta$ for each $e_{lpha,eta}\in {\sf E}^1_\kappa.$

University of Colorado @ Colorado Springs

3

Primitive Leavitt path algebras, and a general solution to a question of Kaplansky

Gene Abrams

A different construction of germane graphs:

Let $\kappa > 0$ be any ordinal. Define E_{κ} as follows:

$${\it E}^{0}_{\kappa} \ = \{ \alpha \ | \ \alpha < \kappa \}, \quad {\it E}^{1}_{\kappa} = \{ {\it e}_{\alpha,\beta} \ | \ \alpha,\beta < \kappa, \ \text{and} \ \alpha < \beta \},$$

$$s(e_{lpha,eta}) = lpha$$
, and $r(e_{lpha,eta}) = eta$ for each $e_{lpha,eta} \in E_{\kappa}^1$.

Suppose κ has uncountable cofinality. Then E_{κ} is downward directed, and has Condition (L), but does not have CSP. This gives:

Theorem: If $\{\kappa_i \mid i \in I\}$ is a set of ordinals having distinct cardinalities, for which each κ_i has uncountable cofinality, then the set $\{L_K(E_{\kappa_i}) \mid i \in I\}$ is a set of nonisomorphic *K*-algebras, each of which is von Neumann regular, and prime, but not primitive.

An intriguing connection:

・ロト・(型)・(目)・(目)・(目)・(の)()

Gene Abrams

University of Colorado @ Colorado Springs

An intriguing connection:

Theorem. (A-, Mark Tomforde, in preparation)

Let E be any graph. Then $C^*(E)$ is primitive if and only if

- **I** E is downward directed.
- 2 E satisfies Condition (L), and
- 3 E satisfies the Countable Separation Property.

3

Primitive Leavitt path algebras, and a general solution to a question of Kaplansky

An intriguing connection:

Theorem. (A-, Mark Tomforde, in preparation)

Let E be any graph. Then $C^*(E)$ is primitive if and only if

- **I** E is downward directed.
- 2 E satisfies Condition (L), and
- 3 E satisfies the Countable Separation Property.

... if and only if $L_{K}(E)$ is primitive for every field K.

-

An intriguing connection:

Theorem. (A-, Mark Tomforde, in preparation)

Let E be any graph. Then $C^*(E)$ is primitive if and only if

- **I** E is downward directed.
- 2 E satisfies Condition (L), and
- 3 E satisfies the Countable Separation Property.

... if and only if $L_{K}(E)$ is primitive for every field K.

This theorem yields an infinite class of examples of prime, nonprimitive C*-algebras.

Gene Abrams

・ロト ・回ト ・ヨト ・ヨト University of Colorado @ Colorado Springs

-

An intriguing connection:

Theorem. (A-, Mark Tomforde, in preparation)

Let E be any graph. Then $C^*(E)$ is primitive if and only if

I E is downward directed.

2 E satisfies Condition (L), and

3 E satisfies the Countable Separation Property.

... if and only if $L_{K}(E)$ is primitive for every field K.

This theorem yields an infinite class of examples of prime, nonprimitive C*-algebras.

Proofs of the sufficiency direction for $L_{\mathbb{C}}(E)$ and $C^{*}(E)$ results are dramatically different.

Gene Abrams

3

Questions?

Gene Abrams

・ロン ・四 と ・ ヨ と ・ 日 と University of Colorado @ Colorado Springs

э