Primitive Leavitt path algebras, and a general solution to a question of Kaplansky

Gene Abrams

vesel \(\begin{aligned} \& University of Colorado
\& Colorado Springs\end{aligned}\)

Noncommutative rings and their Applications, III Université d'Artois, Lens, 1 July 2013
(joint work with Jason Bell and K.M. Rangaswamy)

Throughout R is associative, but not necessarily with identity.

Throughout R is associative, but not necessarily with identity. Assume R at least has "local units":

Prime rings

Definition: I, J two-sided ideals of R. The product $I J$ is the two-sided ideal

$$
I J=\left\{\sum_{\ell=1}^{n} i_{\ell} j_{\ell} \mid i_{\ell} \in I, j_{\ell} \in J, n \in \mathbb{N}\right\}
$$

R is prime if the product of any two nonzero two-sided ideals of R is nonzero.

Prime rings

Definition: I, J two-sided ideals of R. The product $I J$ is the two-sided ideal

$$
I J=\left\{\sum_{\ell=1}^{n} i_{\ell} j_{\ell} \mid i_{\ell} \in I, j_{\ell} \in J, n \in \mathbb{N}\right\}
$$

R is prime if the product of any two nonzero two-sided ideals of R is nonzero.

Examples:

1 Commutative domains, e.g. fields, $\mathbb{Z}, K[x], K\left[x, x^{-1}\right], \ldots$
2 Simple rings
$3 \operatorname{End}_{K}(V)$ where $\operatorname{dim}_{K}(V)$ is infinite. $(\cong \operatorname{RFM}(K))$

Prime rings

Note: Definition makes sense for nonunital rings.

Prime rings

Note: Definition makes sense for nonunital rings.
Lemma: R prime. Then R embeds as an ideal in a unital prime ring R_{1}. (Dorroh extension of R.)
If R is a K-algebra then we can construct R_{1} a K-algebra for which $\operatorname{dim}_{K}\left(R_{1} / R\right)=1$.

Primitive rings

Definition: R is left primitive if R admits a faithful simple (= "irreducible") left R-module.
Rephrased: if there exists ${ }_{R} M$ simple for which $\operatorname{Ann}_{R}(M)=\{0\}$.

Primitive rings

Definition: R is left primitive if R admits a faithful simple (= "irreducible") left R-module.
Rephrased: if there exists ${ }_{R} M$ simple for which $\operatorname{Ann}_{R}(M)=\{0\}$.
Examples:

- Simple rings (note: need local units to build irreducibles)

NON-Examples:

- $\mathbb{Z}, K[x], K\left[x, x^{-1}\right]$

Primitive rings

Primitive rings are "natural" generalizations of matrix rings.
Jacobson's Density Theorem: R is primitive if and only if R is isomorphic to a dense subring of $\operatorname{End}_{D}(V)$, for some division ring D, and some D-vector space V.

Primitive rings

Primitive rings are "natural" generalizations of matrix rings.
Jacobson's Density Theorem: R is primitive if and only if R is isomorphic to a dense subring of $\operatorname{End}_{D}(V)$, for some division ring D, and some D-vector space V.

Here $D=\operatorname{End}_{R}(M)$ where M is the supposed simple faithful R-module.

Primitive rings

Primitive rings are "natural" generalizations of matrix rings.
Jacobson's Density Theorem: R is primitive if and only if R is isomorphic to a dense subring of $\operatorname{End}_{D}(V)$, for some division ring D, and some D-vector space V.

Here $D=\operatorname{End}_{R}(M)$ where M is the supposed simple faithful R-module.

So this gives many more examples of primitive rings, e.g. $\mathrm{FM}(K)$, RCFM (K), etc ...

Primitive rings

Primitive rings are "natural" generalizations of matrix rings.
Jacobson's Density Theorem: R is primitive if and only if R is isomorphic to a dense subring of $\operatorname{End}_{D}(V)$, for some division ring D, and some D-vector space V.

Here $D=\operatorname{End}_{R}(M)$ where M is the supposed simple faithful R-module.

So this gives many more examples of primitive rings, e.g. $\mathrm{FM}(K)$, RCFM (K), etc ...

Definition of "primitive" makes sense for non-unital rings.

Prime and primitive rings

Well-known (and easy) Proposition: Every primitive ring is prime.

Prime and primitive rings

Well-known (and easy) Proposition: Every primitive ring is prime.

If R is prime, then in previous embedding,
R is primitive $\Leftrightarrow R_{1}$ is primitive.

Prime and primitive rings

Converse of Lemma is not true (e.g. $\mathbb{Z}, K[x], K\left[x, x^{-1}\right]$).
In fact, the only commutative primitive unital rings are fields.

Leavitt path algebras

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be any directed graph, and K any field.

$$
\bullet s(e) \xrightarrow{e} \bullet r(e)
$$

Construct the "double graph" (or "extended graph") \widehat{E}, and then the path algebra $K \widehat{E}$.

Leavitt path algebras

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be any directed graph, and K any field.

$$
\bullet s(e) \xrightarrow{e} \bullet r(e)
$$

Construct the "double graph" (or "extended graph") \widehat{E}, and then the path algebra $K \widehat{E}$. Impose these relations in $K \widehat{E}$:

Leavitt path algebras

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be any directed graph, and K any field.

$$
\bullet s(e) \xrightarrow{e} \bullet r(e)
$$

Construct the "double graph" (or "extended graph") \widehat{E}, and then the path algebra $K \widehat{E}$. Impose these relations in $K \widehat{E}$:
(CK1) $\quad e^{*} e=r(e) ; \quad f^{*} e=0$ for $f \neq e$ in E^{1}; and
(CK2) $\quad v=\sum_{\left\{e \in E^{1} \mid s(e)=v\right\}} e e^{*} \quad$ for all $v \in E^{0}$ (just at those vertices v which are not sinks)

Leavitt path algebras

Let $E=\left(E^{0}, E^{1}, r, s\right)$ be any directed graph, and K any field.

$$
\bullet s(e) \xrightarrow{e} \bullet r(e)
$$

Construct the "double graph" (or "extended graph") \widehat{E}, and then the path algebra $K \widehat{E}$. Impose these relations in $K \widehat{E}$:
(CK1) $\quad e^{*} e=r(e) ; \quad f^{*} e=0$ for $f \neq e$ in E^{1}; and
(CK2) $\quad v=\sum_{\left\{e \in E^{1} \mid s(e)=v\right\}} e e^{*} \quad$ for all $v \in E^{0}$ (just at those vertices v which are not sinks)
Then the Leavitt path algebra of E with coefficients in K is:

$$
L_{K}(E)=K \widehat{E} /<(C K 1),(C K 2)>
$$

Leavitt path algebras: Examples

Example 1.

Then $L_{K}(E) \cong \mathrm{M}_{n}(K)$.

Leavitt path algebras: Examples

Example 1.

$$
E=\bullet^{v_{1}} \xrightarrow{e_{1}} \bullet^{v_{2}} \xrightarrow{e_{2}} \bullet^{v_{3}} \ldots \ldots \ldots \ldots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_{n}}
$$

Then $L_{K}(E) \cong \mathrm{M}_{n}(K)$.

Example 2.

$$
E=\bullet^{v_{1}} \xrightarrow{e_{1}} \bullet^{v_{2}} \xrightarrow{e_{2}} \bullet^{v_{3}} \longrightarrow \cdots
$$

Then $L_{K}(E) \cong \mathrm{FM}_{\mathbb{N}}(K)$.

Leavitt path algebras: Examples

Example 1.

$$
E=\bullet^{v_{1}} \xrightarrow{e_{1}} \bullet^{v_{2}} \xrightarrow{e_{2}} \bullet^{v_{3}} \ldots \ldots \ldots \ldots \bullet^{v_{n-1}} \xrightarrow{e_{n-1}} \bullet^{v_{n}}
$$

Then $L_{K}(E) \cong \mathrm{M}_{n}(K)$.

Example 2.

$$
E=\bullet^{v_{1}} \xrightarrow{e_{1}} \bullet^{v_{2}} \xrightarrow{e_{2}} \bullet \bullet^{v_{3}} \longrightarrow \cdots
$$

Then $L_{K}(E) \cong \mathrm{FM}_{\mathbb{N}}(K)$.

Example 3.

$$
E=\bullet^{v_{1}} \xrightarrow{(\mathbb{N})} \bullet^{v_{2}}
$$

Then $L_{K}(E) \cong \mathrm{FM}_{\mathbb{N}}(K)_{1}$.

Leavitt path algebras: Examples

Example 4.

$$
E=R_{1}=\bullet \square x
$$

Then $L_{K}(E) \cong K\left[x, x^{-1}\right]$.

Example 5.

$$
E=R_{n}=\quad
$$

Then $L_{K}(E) \cong L_{K}(1, n)$, the Leavitt algebra of type $(1, n)$.

Leavitt path algebras: basic properties

1. $L_{K}(E)$ is unital if and only if E^{0} is finite; in this case $1_{L_{K}(E)}=\sum_{v \in E^{0}} v$.

Leavitt path algebras: basic properties

1. $L_{K}(E)$ is unital if and only if E^{0} is finite; in this case $1_{L_{K}(E)}=\sum_{v \in E^{0}} V$.
2. Every element of $L_{K}(E)$ can be expressed as $\sum_{i=1}^{n} k_{i} \alpha_{i} \beta_{i}^{*}$ where $k_{i} \in K$ and α_{i}, β_{i} are paths for which $r\left(\alpha_{i}\right)=r\left(\beta_{i}\right)$. (This is not generally a basis.)

Leavitt path algebras: basic properties

1. $L_{K}(E)$ is unital if and only if E^{0} is finite; in this case $1_{L_{K}(E)}=\sum_{v \in E^{0}} V$.
2. Every element of $L_{K}(E)$ can be expressed as $\sum_{i=1}^{n} k_{i} \alpha_{i} \beta_{i}^{*}$ where $k_{i} \in K$ and α_{i}, β_{i} are paths for which $r\left(\alpha_{i}\right)=r\left(\beta_{i}\right)$. (This is not generally a basis.)
3. There is a natural \mathbb{Z}-grading on $L_{K}(E)$, generated by defining

$$
\operatorname{deg}(v)=0, \quad \operatorname{deg}(e)=1, \quad \operatorname{deg}\left(e^{*}\right)=-1
$$

With respect to this grading, every nonzero graded ideal of $L_{K}(E)$ contains a vertex of E.

Leavitt path algebras: basic properties

4. An exit e for a cycle $c=e_{1} e_{2} \cdots e_{n}$ based at v is an edge for which $s(e)=s\left(e_{i}\right)$ for some $1 \leq i \leq n$, but $e \neq e_{i}$.

If every cycle in E has an exit ("Condition (L)"), then every nonzero ideal of $L_{K}(E)$ contains a vertex, and every nonzero left ideal of $L_{K}(E)$ contains a nonzero idempotent.

Leavitt path algebras: basic properties

4. An exit e for a cycle $c=e_{1} e_{2} \cdots e_{n}$ based at v is an edge for which $s(e)=s\left(e_{i}\right)$ for some $1 \leq i \leq n$, but $e \neq e_{i}$.

If every cycle in E has an exit ("Condition (L)"), then every nonzero ideal of $L_{K}(E)$ contains a vertex, and every nonzero left ideal of $L_{K}(E)$ contains a nonzero idempotent.
5. If c is a cycle based at v for which c has no exit, then $v L_{K}(E) v \cong K\left[x, x^{-1}\right]$.

Prime Leavitt path algebras

Notation: $u \geq v$ means either $u=v$ or there exists a path p for which $s(p)=u, r(p)=v . \quad u$ "connects to" v.

Prime Leavitt path algebras

Notation: $u \geq v$ means either $u=v$ or there exists a path p for which $s(p)=u, r(p)=v . \quad u$ "connects to" v.

Lemma. If I is a two-sided ideal of $L_{K}(E)$, and $u \in E^{0}$ has $u \in I$, and $u \geq v$, then $v \in I$.

Easy proof: If p has $s(p)=u, r(p)=w$, then using (CK1) we get

$$
p^{*} p=r(p)=w ; \text { but } p^{*} p=p^{*} \cdot s(p) \cdot p=p^{*} u p \in I .
$$

Prime Leavitt path algebras

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_{K}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^{0}$ there exists $u \in E^{0}$ with $v \geq u$ and $w \geq u$.

Prime Leavitt path algebras

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_{K}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^{0}$ there exists $u \in E^{0}$ with $v \geq u$ and $w \geq u$. "Downward Directed" (MT3)

Prime Leavitt path algebras

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_{K}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^{0}$ there exists $u \in E^{0}$ with $v \geq u$ and $w \geq u$. "Downward Directed" (MT3)
Idea of Proof. (\Rightarrow) Let R denote $L_{K}(E)$. Let $v, w \in E^{0}$. But $R v R \neq\{0\}$ and $R w R \neq\{0\} \Rightarrow R v R w R \neq\{0\} \Rightarrow v R w \neq\{0\} \Rightarrow$ $v \alpha \beta^{*} w \neq 0$ for some paths α, β in E. Then $u=r(\alpha)$ works.

Prime Leavitt path algebras

Theorem. (Aranda Pino, Pardo, Siles Molina 2009) E arbitrary. Then $L_{K}(E)$ is prime \Leftrightarrow for each pair $v, w \in E^{0}$ there exists $u \in E^{0}$ with $v \geq u$ and $w \geq u$. "Downward Directed" (MT3)
Idea of Proof. (\Rightarrow) Let R denote $L_{K}(E)$. Let $v, w \in E^{0}$. But $R v R \neq\{0\}$ and $R w R \neq\{0\} \Rightarrow R v R w R \neq\{0\} \Rightarrow v R w \neq\{0\} \Rightarrow$ $v \alpha \beta^{*} w \neq 0$ for some paths α, β in E. Then $u=r(\alpha)$ works.
$(\Leftarrow) L_{K}(E)$ is graded by \mathbb{Z}, so need only check primeness on nonzero graded ideals I, J. But each nonzero graded ideal contains a vertex. Let $v \in I \cap E^{0}$ and $w \in J \cap E^{0}$. By downward directedness there is $u \in E^{0}$ with $v \geq u$ and $w \geq u$. But then $u=p^{*} v p \in I$ and $u=q^{*} w q \in J$, so that $0 \neq u=u^{2} \in I J$.

The Countable Separation Property

Definition. Let E be any directed graph. E has the Countable Separation Property (CSP) if there exists a countable set of vertices S in E for which every vertex of E connects to an element of S.
E has the "Countable Separation Property" with respect to S.

The Countable Separation Property

Observe: If E^{0} is countable, then E has CSP.

The Countable Separation Property

Observe: If E^{0} is countable, then E has CSP.

Example: X uncountable, S the set of finite subsets of X. Define the graph E_{X} :

1 vertices indexed by S, and
2 edges induced by proper subset relationship.
Then E_{X} does not have CSP.

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)
$L_{K}(E)$ is primitive \Leftrightarrow

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)
$L_{K}(E)$ is primitive \Leftrightarrow
$11 L_{K}(E)$ is prime,

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)
$L_{K}(E)$ is primitive \Leftrightarrow
$1 L_{K}(E)$ is prime,
2 every cycle in E has an exit (Condition (L)),

Primitive Leavitt path algebras

Can we describe the (left) primitive Leavitt path algebras?
Note: Since $L_{K}(E) \cong L_{K}(E)^{o p}$, left primitivity and right primitivity coincide. So we can just say "primitive" Leavitt path algebra.

Theorem. (A-, Jason Bell, K.M. Rangaswamy, Trans. A.M.S., to appear)
$L_{K}(E)$ is primitive \Leftrightarrow
$1 L_{K}(E)$ is prime,
2 every cycle in E has an exit (Condition (L)), and
$3 E$ has the Countable Separation Property.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of $R, N+I=R$.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of $R, N+I=R$.
2. Embed a prime $L_{K}(E)$ in a unital algebra $L_{K}(E)_{1}$ in the usual way; primitivity is preserved.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of $R, N+I=R$.
2. Embed a prime $L_{K}(E)$ in a unital algebra $L_{K}(E)_{1}$ in the usual way; primitivity is preserved.
3. Show that CSP allows us to build a left ideal in $L_{K}(E)_{1}$ with the desired properties.

$L_{K}(E)$ primitive $\Leftrightarrow E$ has (MT3), (L), and CSP

Strategy of Proof:

1. (Easy) A unital ring R is left primitive if and only if there is a left ideal $N \neq R$ of R such that for every nonzero two-sided ideal I of $R, N+I=R$.
2. Embed a prime $L_{K}(E)$ in a unital algebra $L_{K}(E)_{1}$ in the usual way; primitivity is preserved.
3. Show that CSP allows us to build a left ideal in $L_{K}(E)_{1}$ with the desired properties.
4. Then show that the lack of the CSP implies that no such left ideal can exist in $L_{K}(E)_{1}$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

(\Leftarrow). Suppose E downward directed, E has Condition (L), and E has CSP.

Suffices to establish primitivity of $L_{K}(E)_{1}$. Let T denote a set of vertices w/resp. to which E has CSP.
T is countable: label the elements $T=\left\{v_{1}, v_{2}, \ldots\right\}$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Inductively define a sequence $\lambda_{1}, \lambda_{2}, \ldots$ of paths in E for which, for each $i \in \mathbb{N}$,
$1 \lambda_{i}$ is an initial subpath of λ_{j} whenever $i \leq j$, and
$2 v_{i} \geq r\left(\lambda_{i}\right)$.
Define $\lambda_{1}=v_{1}$.
Suppose $\lambda_{1}, \ldots, \lambda_{n}$ have the indicated properties. By downward directedness, there is u_{n+1} in E^{0} for which $r\left(\lambda_{n}\right) \geq u_{n+1}$ and $v_{n+1} \geq u_{n+1}$. Let $p_{n+1}: r\left(\lambda_{n}\right) \rightsquigarrow u_{n+1}$.

Define $\lambda_{n+1}=\lambda_{n} p_{n+1}$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Since λ_{i} is an initial subpath of λ_{t} for all $i \leq t$, we get that
$\lambda_{i} \lambda_{i}^{*} \lambda_{t} \lambda_{t}^{*}=\lambda_{t} \lambda_{t}^{*}$ for each pair of positive integers $i \leq t$.

In particular $\left(1-\lambda_{i} \lambda_{i}^{*}\right) \lambda_{t} \lambda_{t}^{*}=0$ for $i \leq t$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Since λ_{i} is an initial subpath of λ_{t} for all $i \leq t$, we get that

$$
\lambda_{i} \lambda_{i}^{*} \lambda_{t} \lambda_{t}^{*}=\lambda_{t} \lambda_{t}^{*} \text { for each pair of positive integers } i \leq t .
$$

In particular $\left(1-\lambda_{i} \lambda_{i}^{*}\right) \lambda_{t} \lambda_{t}^{*}=0$ for $i \leq t$.

Define $N=\sum_{i=1}^{\infty} L_{K}(E)_{1}\left(1-\lambda_{i} \lambda_{i}^{*}\right)$.
$N \neq L_{K}(E)_{1}$: otherwise, $1=\sum_{i=1}^{t} r_{i}\left(1-\lambda_{i} \lambda_{i}^{*}\right)$ for some $r_{i} \in L_{K}(E)_{1}$, but then

$$
0 \neq 1 \cdot \lambda_{t} \lambda_{t}^{*}=\left(\sum_{i=1}^{t} r_{i}\left(1-\lambda_{i} \lambda_{i}^{*}\right)\right) \cdot \lambda_{t} \lambda_{t}^{*}=0
$$

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of $L_{K}(E)_{1}$ contains some $\lambda_{n} \lambda_{n}^{*}$.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of $L_{K}(E)_{1}$ contains some $\lambda_{n} \lambda_{n}^{*}$.

Idea: E is downward directed, so $L_{K}(E)$, and therefore $L_{K}(E)_{1}$, is prime. Since $L_{K}(E)$ embeds in $L_{K}(E)_{1}$ as a two-sided ideal, we get $I \cap L_{K}(E)$ is a nonzero two-sided ideal of $L_{K}(E)$. So Condition (L) gives that $/$ contains some vertex w.

$L_{K}(E)$ primitive $\Leftarrow E$ has (MT3), (L), and CSP

Claim: Every nonzero two-sided ideal I of $L_{K}(E)_{1}$ contains some $\lambda_{n} \lambda_{n}^{*}$.

Idea: E is downward directed, so $L_{K}(E)$, and therefore $L_{K}(E)_{1}$, is prime. Since $L_{K}(E)$ embeds in $L_{K}(E)_{1}$ as a two-sided ideal, we get $I \cap L_{K}(E)$ is a nonzero two-sided ideal of $L_{K}(E)$. So Condition (L) gives that $/$ contains some vertex w.

Then $w \geq v_{n}$ for some n by CSP. But $v_{n} \geq r\left(\lambda_{n}\right)$ by construction, so $w \geq r\left(\lambda_{n}\right)$. So $w \in I$ gives $r\left(\lambda_{n}\right) \in I$, so $\lambda_{n} \lambda_{n}^{*} \in I$.

Now we're done. Show $N+I=L_{K}(E)_{1}$ for every nonzero two-sided ideal $/$ of $L_{K}(E)_{1}$. But $1-\lambda_{n} \lambda_{n}^{*} \in N$ (all $n \in \mathbb{N}$) and $\lambda_{n} \lambda_{n}^{*} \in I$ (some $n \in \mathbb{N}$) gives $1 \in N+I$.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

For the converse:

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

For the converse:

1) If E is not downward directed then $L_{K}(E)$ not prime, so that $L_{K}(E)$ not primitive.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

For the converse:

1) If E is not downward directed then $L_{K}(E)$ not prime, so that $L_{K}(E)$ not primitive.
2) General ring theory result: If R is primitive and $f=f^{2}$ is nonzero then $f R f$ is primitive.

So if E contains a cycle c (based at v) without exit then $v L_{K}(E) v \cong K\left[x, x^{-1}\right]$, which is not primitive, and thus $L_{K}(E)$ is not primitive.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

3) (The hard part.) Show if E does not have CSP then $L_{K}(E)$ is not primitive.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

3) (The hard part.) Show if E does not have CSP then $L_{K}(E)$ is not primitive.

Lemma. Let N be a left ideal of a unital ring A. If there exist $x, y \in A$ such that $1+x \in N, 1+y \in N$, and $x y=0$, then $N=A$.

Proof: Since $1+y \in N$ then $x(1+y)=x+x y=x \in N$, so that

$$
1=(1+x)-x \in N .
$$

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

We show that if E does not have CSP, then there does NOT exist a left ideal $N \neq L_{K}(E)_{1}$ for which $N+I=L_{K}(E)_{1}$ for all two-sided ideals I of $L_{K}(E)_{1}$.

To do this: assume N is such an ideal, show $N=L_{K}(E)_{1}$.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

We show that if E does not have CSP, then there does NOT exist a left ideal $N \neq L_{K}(E)_{1}$ for which $N+I=L_{K}(E)_{1}$ for all two-sided ideals I of $L_{K}(E)_{1}$.

To do this: assume N is such an ideal, show $N=L_{K}(E)_{1}$.
Strategy: If N has this property, then for each $v \in E^{0}$ we have $N+\langle v\rangle=L_{K}(E)_{1}$. So for each $v \in E^{0}$ there exists $y_{v} \in\langle v\rangle$, $n_{v} \in N$ for which $n_{v}+y_{v}=1$. Let $x_{v}=-y_{v}$. This gives a set $\left\{x_{v} \mid v \in E^{0}\right\} \subseteq L_{K}(E)_{1}$ for which $1+x_{v} \in N$ for all $v \in E^{0}$.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Now show that the lack of CSP in E^{0} forces the existence of a pair of vertices v, w for which $x_{v} \cdot x_{w}=0$. (This is the technical part.)

Then use the Lemma.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Key pieces of the technical part:
1 Every element ℓ of $L_{K}(E)$ can be written as $\sum_{i=1}^{n} k_{i} \alpha_{i} \beta_{i}^{*}$ for some $n=n(\ell)$, and paths α_{i}, β_{i}. In particular, we can "cover" all elements of $L_{K}(E)$ by specifying n and lengths of paths. This is a countable covering of $L_{K}(E)$. (Not a partition.)

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Key pieces of the technical part:
1 Every element ℓ of $L_{K}(E)$ can be written as $\sum_{i=1}^{n} k_{i} \alpha_{i} \beta_{i}^{*}$ for some $n=n(\ell)$, and paths α_{i}, β_{i}. In particular, we can "cover" all elements of $L_{K}(E)$ by specifying n and lengths of paths. This is a countable covering of $L_{K}(E)$. (Not a partition.)
2 Collect up the x_{v} according to this covering. Since E does not have CSP, then some specific subset in the cover does not have CSP.

$L_{K}(E)$ primitive $\Rightarrow E$ has (MT3), (L), and CSP

Key pieces of the technical part:
1 Every element ℓ of $L_{K}(E)$ can be written as $\sum_{i=1}^{n} k_{i} \alpha_{i} \beta_{i}^{*}$ for some $n=n(\ell)$, and paths α_{i}, β_{i}. In particular, we can "cover" all elements of $L_{K}(E)$ by specifying n and lengths of paths. This is a countable covering of $L_{K}(E)$. (Not a partition.)
2 Collect up the x_{v} according to this covering. Since E does not have CSP, then some specific subset in the cover does not have CSP.
3 Show that, in this specific subset Z, there exists $v \in Z$ for which the set

$$
\left\{w \in Z \mid x_{v} x_{w}=0\right\}
$$

does not have CSP. In particular, this set is nonempty. Pick such v and w. Then we are done by the Lemma.

von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

$$
\forall a \in R \exists x \in R \text { with } a=a x a .
$$

(R is not required to be unital.)

von Neumann regular rings

Definition: R is von Neumann regular (or just regular) in case

$$
\forall a \in R \exists x \in R \text { with } a=a x a .
$$

(R is not required to be unital.)
Examples:
1 Division rings
2 Direct sums of matrix rings over division rings
3 Direct limits of von Neumann regular rings
R is regular $\Leftrightarrow R_{1}$ is regular.

Kaplansky's Question

"Kaplansky's Question":
I. Kaplansky, Algebraic and analytic aspects of operator algebras, AMS, 1970.

Is every regular prime algebra primitive?

Kaplansky's Question

"Kaplansky's Question":
I. Kaplansky, Algebraic and analytic aspects of operator algebras, AMS, 1970.

Is every regular prime algebra primitive?
Answered in the negative (Domanov, 1977), a group-algebra example. (Clever, but very ad hoc.)

Kaplansky's Question

Theorem. (A-, K.M. Rangaswamy 2010) $L_{K}(E)$ is von Neumann regular $\Leftrightarrow E$ is acyclic.

Kaplansky's Question

Theorem. (A-, K.M. Rangaswamy 2010)
$L_{K}(E)$ is von Neumann regular $\Leftrightarrow E$ is acyclic.
Idea of Proof: (\Leftarrow) If E contains a cycle c based at v, can show that $a=v+c$ has no "regular inverse".
(\Rightarrow) Show that if E is acyclic then every element of $L_{K}(E)$ can be trapped in a subring of $L_{K}(E)$ which is isomorphic to a finite direct sum of finite matrix rings.

Application to Kaplansky's question

It's not hard to find acyclic graphs E for which $L_{K}(E)$ is prime but for which C.S.P. fails.

Example (mentioned previously): X uncountable, S the set of finite subsets of X. Define the graph E_{X} :

- vertices indexed by S, and
- edges induced by proper subset relationship.

Then for the graph E_{X},
$1 L_{K}\left(E_{X}\right)$ is regular (E is acyclic)
$2 L_{K}\left(E_{X}\right)$ is prime (E is downward directed)
$3 L_{K}\left(E_{X}\right)$ is not primitive (E does not have CSP).

Application to Kaplansky's question

By using uncountable sets of different cardinalities, we get:
Theorem: For any field K, there exists an infinite class (up to isomorphism) of K-algebras (of the form $L_{K}\left(E_{X}\right)$) which are von Neumann regular and prime, but not primitive.

Application to Kaplansky's question

By using uncountable sets of different cardinalities, we get:
Theorem: For any field K, there exists an infinite class (up to isomorphism) of K-algebras (of the form $L_{K}\left(E_{X}\right)$) which are von Neumann regular and prime, but not primitive.

Remark: These examples are also "Cohn path algebras".

Application to Kaplansky's question

For these graphs E, embedding $L_{K}(E)$ in $L_{K}(E)_{1}$ in the usual way gives unital, regular, prime, not primitive algebras. So we get

Theorem: For any field K, there exists an infinite class (up to isomorphism) of unital K-algebras (of the form $\left.L_{K}\left(E_{X}\right)_{1}\right)$ which are von Neumann regular and prime, but not primitive.

Application to Kaplansky's question

For these graphs E, embedding $L_{K}(E)$ in $L_{K}(E)_{1}$ in the usual way gives unital, regular, prime, not primitive algebras. So we get

Theorem: For any field K, there exists an infinite class (up to isomorphism) of unital K-algebras (of the form $\left.L_{K}\left(E_{X}\right)_{1}\right)$ which are von Neumann regular and prime, but not primitive.

Remark: The algebras $L_{K}\left(E_{X}\right)_{1}$ are never Leavitt path algebras.

Application to Kaplansky's question

A different construction of germane graphs:
Let $\kappa>0$ be any ordinal. Define E_{κ} as follows:

$$
E_{\kappa}^{0}=\{\alpha \mid \alpha<\kappa\}, \quad E_{\kappa}^{1}=\left\{e_{\alpha, \beta} \mid \alpha, \beta<\kappa, \text { and } \alpha<\beta\right\},
$$

$s\left(e_{\alpha, \beta}\right)=\alpha$, and $r\left(e_{\alpha, \beta}\right)=\beta$ for each $e_{\alpha, \beta} \in E_{\kappa}^{1}$.

Application to Kaplansky's question

A different construction of germane graphs:
Let $\kappa>0$ be any ordinal. Define E_{κ} as follows:

$$
E_{\kappa}^{0}=\{\alpha \mid \alpha<\kappa\}, \quad E_{\kappa}^{1}=\left\{e_{\alpha, \beta} \mid \alpha, \beta<\kappa, \text { and } \alpha<\beta\right\},
$$

$s\left(e_{\alpha, \beta}\right)=\alpha$, and $r\left(e_{\alpha, \beta}\right)=\beta$ for each $e_{\alpha, \beta} \in E_{\kappa}^{1}$.
Suppose κ has uncountable cofinality. Then E_{κ} is downward directed, and has Condition (L), but does not have CSP. This gives:

Theorem: If $\left\{\kappa_{i} \mid i \in I\right\}$ is a set of ordinals having distinct cardinalities, for which each κ_{i} has uncountable cofinality, then the set $\left\{L_{K}\left(E_{\kappa_{i}}\right) \mid i \in I\right\}$ is a set of nonisomorphic K-algebras, each of which is von Neumann regular, and prime, but not primitive.

Primitive graph C*-algebras

An intriguing connection:

Primitive graph C^{*}-algebras

An intriguing connection:
Theorem. (A-, Mark Tomforde, in preparation)
Let E be any graph. Then $C^{*}(E)$ is primitive if and only if
$1 E$ is downward directed,
2 E satisfies Condition (L), and
$3 E$ satisfies the Countable Separation Property.

Primitive graph C*-algebras

An intriguing connection:
Theorem. (A-, Mark Tomforde, in preparation)
Let E be any graph. Then $C^{*}(E)$ is primitive if and only if
$1 E$ is downward directed,
$2 E$ satisfies Condition (L), and
$3 E$ satisfies the Countable Separation Property.
... if and only if $L_{K}(E)$ is primitive for every field K.

Primitive graph C*-algebras

An intriguing connection:
Theorem. (A-, Mark Tomforde, in preparation)
Let E be any graph. Then $C^{*}(E)$ is primitive if and only if
$1 E$ is downward directed,
2 E satisfies Condition (L), and
$3 E$ satisfies the Countable Separation Property.
... if and only if $L_{K}(E)$ is primitive for every field K.
This theorem yields an infinite class of examples of prime, nonprimitive C^{*}-algebras.

Primitive graph C^{*}-algebras

An intriguing connection:
Theorem. (A-, Mark Tomforde, in preparation)
Let E be any graph. Then $C^{*}(E)$ is primitive if and only if
$1 E$ is downward directed,
2 E satisfies Condition (L), and
$3 E$ satisfies the Countable Separation Property.
... if and only if $L_{K}(E)$ is primitive for every field K.
This theorem yields an infinite class of examples of prime, nonprimitive C^{*}-algebras.
Proofs of the sufficiency direction for $L_{\mathbb{C}}(E)$ and $C^{*}(E)$ results are dramatically different.

Questions?

